Assignment-1

Subject Code: BMAT0-201 Subject: Applied Mathematics-II (UNIT-I)

- 1. Show that the radius of curvature of a circle is constant.
- 2. Prove that for the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, the radius of curvature is $\frac{a^2b^2}{p^3}$, where *p* is the perpendicular from the center to the tangent at (x, y).
- 3. If ρ_1 and ρ_2 are the radii of curvatures at the extremities of a focal chord of the parabola $y^2 = 4ax$, prove that $\rho_1^{-\frac{2}{3}} + \rho_2^{-\frac{2}{3}} = (2a)^{-\frac{2}{3}}$.
- 4. If ρ_1 and ρ_2 are the radii of curvatures at the extremities of two conjugate semi-diameters of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, show that $\left(\rho_1^{\frac{2}{3}} + \rho_2^{\frac{2}{3}}\right) (ab)^{\frac{2}{3}} = a^2 + b^2$.
- 5. Show that for the catenary $y = \frac{c}{2} \left(e^{\frac{x}{c}} + e^{-\frac{x}{c}} \right)$, the radius of curvature at any point varies as square of it ordinate.
- 6. Show that radius of curvature at the end of the major axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is equal to the semi-latus rectum of the ellipse.
- 7. Show that radius of curvature at any point of the cardioid $r = a(1 + \cos \theta)$ is $\frac{2}{3}\sqrt{2ar}$ and that $\frac{\rho^2}{r}$ is constant.
- 8. Show that the radii of curvature at the origin on the curve $x^3 + y^3 = 3axy$ is equal to $\frac{3a}{2}$.
- 9. Show that the radius of curvature at any point of the cycloid $x = a(t + \sin t)$ and $y = a(1 \cos t)$ is $4a\cos\frac{t}{2}$.
- 10. Show that radius of curvature at any point of the cardioid $r = a(1 \cos \theta)$ varies as \sqrt{r} .

- 11. If $f(x) = ax^3 + 3bx^2$, determine *a*, *b* so that the graph of the function will have a point of inflexion at (-1, 2).
- 12. Examine the curve $y = x^3 9x^2 + 10x + 5$ for concavity upwards and concavity downwards.
- 13. Find the point of inflexion of the curve $y = \frac{1}{6} (x^3 6x^2 + 9x + 6)$.
- 14. Find the horizontal and vertical asymptotes of the curve $x^2y^2 a^2(x^2 + y^2) = 0$. Also show that these form a square of side 2a.
- 15. Find all the asymptotes of the curve $f(x, y) = y^3 xy^2 x^2y + x^3 + x^2 y^2 1 = 0$.
- 16. Trace the curve $a^2 y^2 = x^2 (a^2 x^2)$.
- 17. Trace the curve $y^2(2a-x) = x^3$ (Cissoid).
- 18. Trace the curve $x^3 + y^3 = 3axy$ (Folium of Descartes).
- **19.** Trace the curve $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$.
- 20. Trace the curve $x = a(\theta + \sin \theta)$, $y = a(1 \cos \theta)$.
- 21. Trace the curve $r = a(1 + \cos \theta), a > 0$.
- 22. Find the area enclosed by the curve $x(x^2 + y^2) = a(x^2 y^2)$ and its asymptote.
- 23. In the cycloid $x=a(\theta+\sin\theta)$, $y=a(1-\cos\theta)$, find the area between the curve and its base.
- 24. Find the area bounded by Cardioid $r = a(1 + \cos\theta)$.
- 25. Show that the area common to the Cardioid $r=a(1-\cos\theta)$ and $r=a(1+\cos\theta)$ is $\frac{a^2}{2}(3\pi-8)$.
- 26. Find the area bounded by the parabola $y^2 = 4ax$, and its latus-ractum.
- 27. Find the area between parabolas $y^2 = 4ax$ and $x^2 = 4ay$.

- 28. Find the length of the arc of the parabola $y^2 = 4ax$ cut off by the line 3y = 8x.
- 29. Show that the length of an arc of the cycloid whose equations are $x=a(\theta-\sin\theta), y=a(1-\cos\theta)$ is 8a.
- 30. Find the perimeter of the cardioid $r = a(1 \cos\theta)$. Also show that the upper half of the curve is bisected by the line $\theta = \frac{2\pi}{3}$.

31. Find the area of the loop of the curve $x = t^2$, $y = t(1 - \frac{t^2}{3})$.

- 32. Find the volume and surface generated by the revolution of the Astroid $x = a \cos^3 \theta$, $y = a \sin^3 \theta$, about the x axis.
- 33. Find the volume generated by the revolution of the area under one complete arch of the cycloid $x = a(\theta \sin \theta), \quad y = a(1 \cos \theta).$ The axis of revolution being (i) the x - axis (ii) the y - axis.
- 34. Find the centre of gravity of a triangular lamina.
- 35. Find the centre of gravity of a solid in the form of a hemisphere of radius *a units*.
- 36. Find the centre of gravity of the area cut-off from the parabola $y^2 = 4ax$ by the line y = mx. Hence find the locus of the centroid.
- 37. Find the moment of inertia of a triangle about its base.
- 38. Find the moment of inertia of a solid sphere about its diameter.
- 39. Find the moment of inertia of hollow right circular cone about its axis.
- 40. Find the moment of inertia of the area intercepted by the parabolas $y^2 = 4ax$ and $x^2 = 4ay$ about the x axis.

Dr Amritbir Singh Professor-in-Mathematics B.B.S.B. Engg. College, Fatehgarh Sahib